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Dynamical crossover in deterministic diffusion
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We study diffusion in a one-dimensional periodic array of scatterers modeled by a simple map. The chaotic
scattering process of the map can be changed by a control parameter and exhibits a dynamics analogous to a
crisis in chaotic scattering. We show that the associated strong backscattering induces a crossover between
different asymptotic laws for the parameter-dependent diffusion coefficient. These laws are obtained from
exact diffusion coefficient results and are supported by simple random walk models. We conjecture that the
main physical feature of this crossover is present in many other dynamical systems exhibiting nonequilibrium
transport[S1063-651X97)50502-2

PACS numbd(s): 05.45+b, 05.60+w

One of the basic mechanisms in the theory of chaotigosition of a point particle at discrete tinme M,(x) is con-
dynamical systems are crisis events, where the asymptotitnued periodically beyond the interv@D,1) onto the real
dynamics of the system change dramatically with respect téine by a lift of degree oneM(x+1)=M(x)+1. We as-
the variation of a control parametgt—3]. Recently, it was sume thatM,(x) is antisymmetric with respect ta=0,
found that related events occur in simple chaotic scattering/l,(x)=—My(—X), i.e., that there is no drift imposed on a
systems when the scattering rules are varied. This phenonpoint particle[13]. As an example, we consider the sawtooth
enon has been called a crisis in chaotic scattddiigOn the  map sketched in Fig. 1. It was chosen as a periodic continu-
other hand, considerable literature has developed in whichtion of the map studied in Rd#], which exhibits a crisis in
the origin of transport in nonequilibrium statistical mechan-chaotic scattering. The control parameter is here the height
ics has been connected to the characteristics of chaotic scdt-of the map, which is related to the absolute value of the
tering processeb]. One problem studied was deterministic slopea by h=(a—3)/4. The diffusive properties of similar
diffusion in simple one-dimensional mag$-9], where maps have been studied in Ref6,7,9. For this sawtooth
parameter-dependent diffusion coefficients have been commap the parameter-dependent diffusion coefficient has been
puted by taking the complete equations of motion of thecomputed by solving the Frobenius-Perron equation of the
dynamical systems into accourjtl0,11]. Related one- dynamical systeni2],
dimensional maps have been proposed in REfas simple
models that exhibit a crisis in chaotic scattering. Thus, the
guestion arises whether features of a crisis in chaotic scatter-
ing have an impact on deterministic diffusion. We study a ] - ] ]
periodic continuation of the map of Ré#] on the real line  Wherepn(x) is the probability density for points on the real
so that it exhibits diffusive behavior. We find that the diffu- ine, andMp(y) is the map under consideration. There exists
sion coefficient has a global structure with a crossover from
linear to quadratic dependence on the slope. These algebraic 2 F
laws have already been noticed by previous authors for simi-
lar maps, either obtained from simple approximations, or
based upon calculations for special values of the slope
[6,7,19. We show that their suggestive arguments are quan-

pn+1(x)=f dy pn(y) 8(x—Mp(y)), 1)

D(h)

titatively supported by the accurate parameter-dependent dif- 0.1
fusion coefficient of the map and qualitatively by two simple

random walk models. More detailed studies of the diffusion

coefficient, and of the microscopic scattering process in this ool b

model, reveal that the specific shape of the crossover region e
depends on whether the map exhibits the dynamics of a crisis 0.01 0.1 1 23
in chaotic scattering or not. However, generically this cross-
over is due to backscattering, and it should be encountered
in many dynami_cal systems With nqnequ"ibrium _tranSp_ort' FIG. 1. Double logarithmic plot of the diffusion coefficient
) In the fO||pWIng, we C_onSIder dlscr_ete one_-dlmenSIOHaID(h) with respect to the height for the sawtooth map shown in
piecewise linear chaotic maps with uniform slope, e figure. The graph is based on 38 889 single data points. Two
Xn+1=Mn(Xn), whereh is a control parameter, ang| is the  random walk solutiongdotted line$ and two curves, which ap-
proximately give the boundaries of the oscillations @fh) for
values ofh above the backscattering poiht (dashed lines are
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a dense set of parameter valuegor which one can con- 0.35 - -
struct Markov patrtitions for the map, and for each of these 03 | | A N
parameter values Eql) can be written as a matrix equation ’ \ 1. N
[10,11], 025, | 78 /
N / 1 /
poi1=(1a) T py. ) = % A
- o B o015t
P, represents a column vector of the probability densities in
each part of the Markov partition at tintg andT is a topo- 0.1y
logical transition matrix, which can be obtained from the 0.05 |
Markov partition. However, instead of solving the eigen-
value problem ofT [10], here solutions for the probability 00 02 04 06 o8 1
density vectolp, have been obtained by iterating HE),
h
Pn1=(1a|" T pg. (©))

FIG. 2. Chaotic scattering in the sawtooth map and its connec-
Starting with any probability density vectgk this iteration  tion to the behavior of the diffusion coefficieBt(h). Certain mi-
method enables us to compute the exact time-dependesioscopic scattering mechanisms of the map are identified by
probability densityp,, at any time stem and all other dy- shaded squares and triangles. The same symbols are shown along
namical quantities based on probability density averages fahe D(h) curve, where they indicate the impact of the respective
maps of the type oM, (x) [11,14,15. In particular, it pro-  scattering regions on the diffusion coefficient. The graph consists of
vides an efficient way to calculate diffusion coefficients by 10 268 single data points.
employing an Einstein formulg6,8,9,13,
1 These approximations indicate three different regions of
= lim — 2 coarse-grained behavior for the exact diffusion coefficient:
D(h) ,!LnLan dx pa(X)x%, @ The first one is a simple initial region, where the diffusion
coefficient behaves linearly for small heights. Foeh, it
where the integral is the second moment of the time-decreases slightly on increasing the height. Finally, for
dependent probability densifyt6]. h=0.5 it starts to grow quadratically in the height, but with
Figure 1 shows a log-log plot of the diffusion coefficient strong oscillations on a fine scale. The transition between the
as a function oh up toh=3.5. Included are four curves that two different types of asymptotic coarse-grained behavior,
describe the coarse-grained behavior of the exact resultahich occurs in the crossover region lnf<h=0.5, can be
There exist several methods to compute the diffusion coeffiunderstood by referring to the action of certain microscopic
cient for maps of this type for integer values of the heightscattering mechanisms. They are introduced in Fig. 2, where
analytically[6,7,9—11. By applying the eigenvalue method certain regions of the map have been distinguished by shaded

of Ref.[10] we get squares and triangles: The triangles refer to parts where
points of one unit interval get mapped from that interval into
_2h%+3h?+h  h? another unit interval. Additionally, if points enter a square

T 12019 6 (h—), heN. (5 they preferably move into the triangular escape region above

or below the respective square after some iterations. These

The two dashed curves give approximate limits for the oscil-squares are identical to the squares of an analogous scatter-
lations of the exact diffusion coefficient in the rangeing model, where they provide the basic mechanism for a
h>hy,. They are obtained by fitting the diffusion coefficient crisis in chaotic scatterin§4]. The abbreviationd (“for-
with the functional form of Eq.55) at h=(2k+1)/2 and ward”) and b (* backward”) in these scattering regions
h=(4k+3)/4 , k €Ny, for the upper and lower curve, re- refer to the dynamics of the critical point of the map, which
spectively. The twalottedcurves show two simple random is indicated by a small circle. Its first iteration is shown
walk approximations, where it is assumed that the probabilby the dashed line with the arrows. At its second iteration,
ity density of a scatterer is uniform. For large heights theand by increasing the heighit continuously up from
distance a point particle travels at one time step by movingero, the orbit of the critical point, denoted as ttritical
from one unit interval to another is taken into account ex-orbit in the following, travels along the graph of the map
actly [2], and we get in the next right box from the upper left to the lower right,
as indicated by bold black arrows. This way, the critical
orbit explores all the different scattering regions of the map
ash is increased from zero. If the orbit hits a region labeled
by ab it is in a position to gebackscatterednto the box to
which gives the dotted line plotted fdi>hy,. For small the left. Vice versaif the orbit enters arf region it is in a
heights the absolute value of the distance is approximated foreferable position to move furthéorward to the next box
either zero or one, depending on whether the particle remain® the right. The critical point indicated in Fig. 2 is part of a
on a unit interval or leaves [6,8,19. This leads to forward scattering region. Note that there is a dense set of

points around the critical point that exhibits the same dynam-
7) ics, at least for the first few iterations. An event dynamically

analogous to the one that occurs at a crisis in chaotic scat-

12 h?
Daa= [ aM0-x g (h), @

Drwa(h) =73 —3h (h=0).
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tering now occurs at theoint of strong backscattering slope being different from that of the sawtooth map, and
defined by the parameter value of the heigptfor which  in the limit of large heights, the diffusion coefficient in-
the critical orbit of the forward scattering region hits the creases quadratically with a factor of 1/6, as in the case of
boundary of a backward scattering region in the next righthe sawtooth map. Analogous results for asymptotic diffu-
box after one iteration for the first time. This case is illus-sion coefficients have been reported in R¢€7] for many
trated in Fig. 2 and, for the map shown, is determined byother maps of the type d¥1,,(x), although in this previous
h,= (/17— 3)/8=0.1404. We emphasize that this process iswork diffusion coefficients could be computed exactly only
topologically not identical to a crisis, or a crisis in chaotic for special values of the height, and the asymptotic regimes
scattering, since it is not generated by the merging of twacould not be verified rigorously with respect to the full
formerly isolated invariant sets in the phase space. Neverthg@arameter-dependent diffusion coefficient. These results in-
less, we argue thadynamically this process provides the dicate that a backscattering-induced dynamical crossover
same characteristics as a crisis in chaotic scattering, espghould be typical for diffusive maps of the type Mf,(x). In
cially the onset of strong backscatterig11l. The squares the imit of small heights, the asymptotic diffusion coeffi-
and the triangles along the diffusion coefficient curve nowgjent must always decrease linearly, as can be understood by
refer to parameter regions where the critical orbit getsy simple geometrical argumef,12]. In the limit of large

mapped into the respective scattering regions. The differeniaighis we expect that it always increases quadratically with
symbols on the curve denote boundary points where the criti; factor of 1/6. Similar results may be obtained for certain

cal orbit enters, or leaves, these regions. The diffusion coet;|_ccos of two-dimensional maf®17].

ficient clearly decreases globally if the critical orbit enters a We coniecture that the main phvsical feature of this cross-
backscattering region, and it increases globally if it exhibits I phy

forward scattering. Hence, the different microscopic scatter®¥<" € @ connection between the onset of strong micro-

ing mechanisms defined above are connected to regions 1 'backscattermg and a change in the be_hgwor qf mac-
the macroscopic diffusion coefficient which exhibit different F0SCOPIC parameter-dependent transport coefficients, is quite
parameter-dependent behavior. We remark that the pararf®Mmon as well in more r_eall_stlc Hamlltoma_m systems: For
eter region of backscattering corresponding to the broa§x@mple, in Ref[18] diffusion in two-dimensional periodic
crossover region in Fig. 1 is precisely identical to the respecCoulombic potentials has been studied, and an energy thresh-
tive parameter region in the model of Ré#i] where en- old has been proved to exist above which the diffusion co-
hancement of chaotic scattering, triggered by a crisis, occur€fficient increases with a power law in the particle energy,
Moreover, the backscattering poit, indicates the first Whereas below this threshold no diffusion coefficient exists.
strong local maximum of the curve, as shown in Fig. 2. Mag-In Ref. [4] it has been found that related models exhibit a
nifications reveal that the fine structure of the curve changesrisis in chaotic scattering. The existence of this energy
dramatically from quite regular below, to much more ir- threshold might thus be linked to the dynamics of a crisis in
regular just above, and that the curve is fra¢fid)]. These chaotic scattering as in case of the dynamical crossover dis-
features can be understood in detail by refining the procedureussed above. Furthermore, for a crisis in chaotic scattering
explained above and reflect a drastic change in the micrahe significance of orbiting collisions has been pointed out,
scopic dynamics of the model, which at the backscatteringndicating the onset of strong backscatteridd. However,
point h, develops from rather simple to more complex mo-orbiting collisions have already been studied in the frame-
tion[11,14. work of the kinetic theory of gases for Lennard-Jones fluids
Thus, the onset of strong backscattering affects the diffuat low densities, and at low temperatures a qualitative con-
sion coefficient of the sawtooth map not only on a fine scalepection between the onset of these collisions and a small
but also on a coarse-grained scale. This phenomenon may bbange in the temperature-dependent behavior of transport
understood as backscattering-induced dynamical crossover coefficients has been notéd9]. Thus, physically one may
in deterministic diffusionThe extension and specific shape connect the occurrence of certain microscopic chaotic scat-
of the crossover region are due to the sawtooth map exhildering processes, or in special cases even crisis events, to a
iting the dynamics of a crisis in chaotic scattering. On thespecific behavior of transport coefficients. These events may
other hand, an onset of strong backscattering must eventuallye linked to macroscopic dynamical crossover phenomena
occur in any map of the type &fl,,(x) at a certain parameter or, in certain cases, possibly even to dynamical phase tran-
value, independently of its special functional form. This sitions[20,21].
can be checked by identifying the forward and backward In summary,(a) the sawtooth map under consideration
scattering regions of a map and applying the definition of théhere was chosen as a diffusive version of a one-dimensional
backscattering point given above. As an example, the piecadynamical system exhibiting a crisis in chaotic scattering. A
wise linear, discontinuous, nonsawtooth map studied in Refcrossover in the parameter-dependent diffusion coefficient of
[10] has been analyzed. We find that the respective backhis map has been found, linked to the dynamical mechanism
scattering point of the map again corresponds to the firsof this crisis event. This suggests that the dynamics of a
strong local maximum of the diffusion coefficient curve, andcrisis in chaotic scattering can trigger a dramatic effect in
that again this point is related to a change between two difnonequilibrium transportb) The dynamical crossover found
ferent laws for the asymptotic diffusion coefficient. Since here affects the diffusion coefficient of the model not only on
this map does not mimic the dynamics of a crisis in chaotica fine scale, but also on a coarse-grained scale, and induces a
scattering, it lacks a broad crossover region right above itgransition between two different algebraic laws for the as-
backscattering point. However, again the diffusion coeffi-ymptotic diffusion coefficient.c) The crossover is under-
cient grows linearly for small values of the height, only the stood physically by relating the onset of strong microscopic
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